Views
4 years ago

C3 - MC Brió - 11/2009

  • Text
  • Atencion
  • Hiperactividad
  • Esquizofrenia
  • Parkinson
  • Nmda
  • Cpf
  • Zieher
  • Animales
  • Prefrontal
  • Actividad
  • Neuronas
  • Corteza
  • Receptor
  • Receptores
  • Dopamina
  • Sistema
  • Memoria
La importancia de la dopamina en la cognición

LM Zieher -

LM Zieher - MC Brió // Tratrado de Psicofarmacología y Neurociencia, Volumen I, Esquizofrenia y otras psicosis. Neurobiología y terapéuticas cerebral que implican deterioro o exacerbación de la neurotransmisión DA pueden resultar en efectos patológicos sobre la conducta, y la utilización de compuestos farmacológicos que actúen a ese nivel puede representar una estrategia eficiente que permitiría tanto corregir estados patológicos como atenuar la discapacidad vinculada con el envejecimiento normal. Referencias bibliográficas 1. Zieher LM, Fadel D, Estrada Martínez L. Psicofarmacología clínica y sus bases neurocientíficas, 3ª edición Neurotransmisión dopaminérgica. Cap. 3, pág. 23. 2. Neurotransmitters and Neuromodulators. Handbook of receptors and biological effects. Oliver von Bohlen und Halbach, Rolf Dermietzel. Wiley-VCH Verlang Gmbh y Co. KgaA. Pag 59. 2006. 3. Nieoullon A. Dopamine and the regulation of cognition and attention. Progress in Neurobiology. 67:53-83. 2002. 4. Brozowski T, Brown R, Rosvold H, Goldman P. Cognitive deficits caused by regional depletion of dopamine in the prefrontal cortex of Rhesus monkeys. Science. 1979; 205,929-31. 5. Robbins T. Role of cortical and striatal dopamine in cognitive function. Handbook of Chemical Neuroanatomy. Editors Dunnet S, BentovoglioM, Bjorklund A, Hokfelt T. Elservier. 2005. Vol 21 Dopamine. Chapter 7, pag.395. 6. Bentovoglio M, Morelli M. The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. Handbook of Chemical Neuroanatomy. Editors Dunnet S, BentovoglioM, Bjorklund A, Hokfelt T. Elservier. 2005; Vol 21 Dopamine. Chapter 1, pag 1. 7. Takahashi H, Kato M, Takano H, Arakawa R, Okumuta M, Otsuka T, Kodaka Hayashi M, Okubo Y, Ito H, Suhara T. Differential contributions of prefrontal and hipocampal dopamine D1 and D2 receptors in human cognitive functions. The Journal of Neuroscience. 2008; 28:12032-12038. 8. Castner S, Williams G. Tuning the engine of cognition. A focus NMDA/D1 receptor interactions in prefrontal cortex. Brain and Cognition. 2007,63:94-122. 9. Marsden C. Dopamine: the regarding years. British J Pharmacology. 2006;147:S136-S144. 10. Di Chiara G. Dopamine, motivation and reward. Handbook of Chemical Neuroanatomy. Editors Dunnet S, Bentovoglio M, Bjorklund A, Hokfelt T. Elservier. 2005; Vol 21 Dopamine. Chapter 6. Pag 303. 11. Arco A, Mora F. Neurotransmitters and prefrontal cortex-limbic system interactions: implications for plasticity and psychiatric disorders. J Neural Transm. 2009. (Epub ahead of print). Abstract. 12. Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do it? Trends in Neuroscience. 2006;29:167-174. 13. Livingstone P, Srinivasan J, Dawson L, Gotti L, Moretti M, Shoaib M, Wonnacott S. Alfa 7 and no Alfa 7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur J Neuroscience. 2009;29:539-550. 14. Buchanan R, Freedman R, Javitt D, Abi-Darghman A, Lieberman J. Recent advances in the development of novel pharmacological agents for the treatment of cognitive impairments in schizophrenia. Schizophrenia Bulletin. 2007;33:1120-1130 60

MC Brió // La importancia de la dopamina en la cognición 15. Terry A. Role of the central cholinergic system in the therapeutics of schizophrenia. Current Neuropharmacol. 2008;6:286-292. 16. Terry A, Gearhart D, Warner S, Hohnadel E, Middelmore M, Zhang G, Barlett M, Mahadik S. Protacted effects of chronic haloperidol and risperidone on nerve growth factor, cholinergic neurons, and spatial reference learning. Neuroscience. 2007;150:413-424. 17. Terry A, Hill W, Parikh V, Waller J, Evans D, Mahadik S. Differential effects of haloperidol, risperidone, and clozapine exposure on cholinergic markers and spatial learning performance in rats. Neuropsychopharmaology. 2003;28:300-309. 18. Ping Deng, Yuchun Zhang, Zao Chu. Involvement of Ih in dopamine modulation of tonic firing in striatal cholinergic interneurons. Journal of Neurosc. 2007;27:3148-3156. 19. Parijh V, Terry A, khan M, Mahadik S. Modulation of nerve growth factor and choline acetyltransferase expression in rat hipocampal after chronic exposure to haloperidol, risperidone, and olanzapine. Psychopharmacology. 2004;172:365-374. 20. Parikh V, Terry A, Khan M, Mahadik S. Modulation of nerve growth factor and choline acetyltransferase expression in rat hippocampus after chronic exposure to haloperidol, risperidone, and olanzapine. 21. Amy Arnsten. Dopaminergic and noradrenergic influences of cognitive functions mediated by prefrontal cortex. Cap 7, pag 185. Stimulant drugs and ADHD. Edited by Mary Solanto, Amy Arnsten, and Xavier Castellanos. Oxford University Press. 2001. 22. Grace A. Psychoestimulants actions on dopamine and limbic system function. Stimulants drugs and ADHD. Basic and clinical neuroscience. Edited by Solanto M, Arnsten A, and Castellanos F. Cap 5. Pag. 134. Oxford University Press. 2001. 23. Gonon F. The dopaminergic hypothesis of attention–deficit/hyperactivity disorder needs re-examining. Trend in neuroscience. 2009;32:2-8. 24. Blum K, Lih-Chuan Chen A, Braverman E, Comings D, Chen T, Arcuri V, Blum S, Attention-deficit-hiperactivity disorder and reward deficiency syndrome. Neuropsychiatric Disease and Treatment. 2008;4:893-917. EDITORIAL SCIENS 61

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015