Views
3 years ago

GB Acosta, J Manzanares Robles - Neurobiología del estrés temprano

  • Text
  • Robles
  • Acosta
  • Descendencia
  • Prenatal
  • Posnatal
  • Prenatal
  • Temprano
  • Estres
  • Estres
  • Efectos
  • Aumento
  • Embarazo
  • Estudios
  • Fetal
  • Ejercicio
  • Respuesta
  • Maternal
  • Vida
  • Desarrollo
Neurobiología del estrés temprano. Respuestas del estrés durante la programación de la vida temprana.

GB

GB Acosta, J Manzanares Robles // Neurobiología del estrés temprano. Respuesta del estrés durante la programación de la vida temprana. profundizar respecto de las acciones benéficas del NAC en condiciones subóptimas de crecimiento fetal (187). Considerando los aspectos antes descritos, intervenciones para la prevención y el tratamiento de la RCF deben fundarse en perspectiva multifactorial, que permita abordar los diferentes mecanismos involucrados en la disfunción placentaria. Esto representa uno de los principales desafíos para el área de investigación en Orígenes y desarrollo de la enfermedad y Salud (DOHaD), pues entre más temprana y eficiente sea una intervención, mayor es su impacto sobre el bienestar del individuo a largo plazo, así como a nivel socioeconómico (188). Referencias bibliográficas • 1. Hsu, C.Y. Influence of temperature on development of rat embryos. Anat Rec, 1948. 100(1): p. 79-90. • 2. Nelsen, O.E. Increased atmospheric pressure and development of the chick embryo; the effect of pressure on hatchability. Anat Rec, 1946. 96(4): p. 568. • 3. Werthemann, A., M. Reiniger, and H. Thoelen, (Studies on the effect of oxygen deficiency on fetal development in mammals). Schweiz Z Pathol Bakteriol, 1950. 13(6): p. 756-9. • 4. Alexander, M. and L. Alkema. Global Estimation of Neonatal Mortality using a Bayesian Hierarchical Splines Regression Model. Demographic Research, 2016. 38. • 5. Sauve, R.S., H. Molnar-Szakacs, and C. McCourt. Highlights of the Canadian Perinatal Health Report 2003. Paediatrics & Child Health, 2004. 9(4): p. 225-227. • 6. Mahy, M. Childhood mortality in the developing world: A review of evidence for the Demographic and Health Surveys, in DHS Comparative Reports No. 4. 2003, ORC Macro: Calverton, Maryland, USA. • 7. Almond, D.S. Emergency medicine. Clin Med (Lond), 2005. 5(2): p. 173-5. • 8. Russell, R.B., et al. Cost of hospitalization for preterm and low birth weight infants in the United States. Pediatrics, 2007. 120(1): p. e1-9. • 9. Johnson, T.J., et al. Cost of morbidities in very low birth weight infants. J Pediatr, 2013. 162(2): p. 243-49 e1. • 10. Fuentes, A., et al. Association between motherhood postponement and socioeconomic status. Rev Med Chil, 2010. 138(10): p. 1240-5. • 11. Balasch, J. and E. Gratacos. Delayed childbearing: effects on fertility and the outcome of pregnancy. Fetal Diagn Ther, 2011. 29(4): p. 263-73. • 12. Riccioni, G., et al. Antioxidant vitamin supplementation in cardiovascular diseases. Ann Clin Lab Sci, 2007. 37(1): p. 89-95. • 13. Catalano, P.M. and K. Shankar. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ, 2017. 356: p. j1. • 14. Dutton, H., et al. Obesity in Pregnancy: Optimizing Outcomes for Mom and Baby. Med Clin North Am, 2018. 102(1): p. 87-106. • 15. Blomberg, M., R. Birch Tyrberg and P. Kjolhede. Impact of maternal age on obstetric and neonatal outcome with emphasis on primiparous adolescents and older women: a Swedish Medical Birth Register Study. BMJ Open, 2014. 4(11): p. e005840. • 16. Schimmel, M.S., et al. The effects of maternal age and parity on maternal and neonatal outcome. Arch Gynecol Obstet, 2015. 291(4): p. 793-8. 32

• 17. Pylipow, M., et al. Early postnatal weight gain, intellectual performance, and body mass index at 7 years of age in term infants with intrauterine growth restriction. J Pediatr, 2009. 154(2): p. 201-6. • 18. Savchev, S., et al. Neurodevelopmental outcome of full-term small-for-gestational-age infants with normal placental function. Ultrasound Obstet Gynecol, 2013. 42(2): p. 201-6. • 19. Hales, C.N. and D.J. Barker. The thrifty phenotype hypothesis. Br Med Bull, 2001. 60: p. 5-20. • 20. Barker, D.J. Adult consequences of fetal growth restriction. Clin Obstet Gynecol, 2006. 49(2): p. 270-83. • 21. Hanson, M.A. and P.D. Gluckman. Developmental origins of health and disease: Moving from biological concepts to interventions and policy. International Journal of Gynecology & Obstetrics, 2011. 115: p. S3-S5. • 22. Hanson, M.A. and P.D. Gluckman. Early developmental conditioning of later health and disease: ¿physiology or pathophysiology? Physiol Rev, 2014. 94(4): p. 1027-76. • 23. Crispi, F., et al. Cardiovascular programming in children born small for gestational age and relationship with prenatal signs of severity. Am J Obstet Gynecol, 2012. 207(2): p. 121 e1-9. • 24. Crispi, F., et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation, 2010. 121(22): p. 2427-36. • 25. Gonzalez-Tendero, A., et al. Intrauterine growth restriction is associated with cardiac ultrastructural and gene expression changes related to the energetic metabolism in a rabbit model. Am J Physiol Heart Circ Physiol, 2013. 305(12): p. H1752-60. • 26. Sarvari, S.I., et al. Persistence of Cardiac Remodeling in Preadolescents With Fetal Growth Restriction. Circ Cardiovasc Imaging, 2017. 10(1). • 27. Carreno, C.A., et al. Approximately one-third of medically indicated late preterm births are complicated by fetal growth restriction. Am J Obstet Gynecol, 2011. 204(3): p. 263 e1-4. • 28. Pallotto, E.K. and H.W. Kilbride, Perinatal outcome and later implications of intrauterine growth restriction. Clinical obstetrics and gynecology, 2006. 49(2): p. 257-69. • 29. Sharma, D., et al. Intrauterine growth restriction - part 1. J Matern Fetal Neonatal Med, 2016. 29(24): p. 3977-87. • 30. Slancheva, B. and H. Mumdzhiev (Small for gestational age newborns definition, etiology and neonatal treatment). Akush Ginekol (Sofiia), 2013. 52(2): p. 25-32. • 31. Pasztor, N., Z. Kozinszky, and A. Pal. Fetus, small for gestational age. Orv Hetil, 2014. 155(33): p. 1301-5. • 32. Miller, J., S. Turan, and A.A. Baschat. Fetal growth restriction. Seminars in perinatology, 2008. 32(4): p. 274-80. • 33. Zhang, J., et al. Defining normal and abnormal fetal growth: promises and challenges. American journal of obstetrics and gynecology, 2010. 202(6): p. 522-8. • 34. Beune, I.M., et al. Consensus Based Definition of Growth Restriction in the Newborn. J Pediatr, 2018. 196: p. 71-76 e1. • 35. Nathanielsz, P.W. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J, 2006. 47(1): p. 73-82. • 36. Ergaz, Z., M. Avgil, and A. Ornoy. Intrauterine growth restriction-etiology and consequences: ¿what do we know about the human situation and experimental animal models? Reprod Toxicol, 2005. 20(3): p. 301-22. • 37. Valsamakis, G., et al. Causes of intrauterine growth restriction and the postnatal development of the metabolic syndrome. Annals of the New York Academy of Sciences, 2006. 1092: p. 138-47. • 38. Hendrix, N. and V. Berghella. Non-placental causes of intrauterine growth restriction. Seminars in perinatology, 2008. 32(3): p. 161-5. • 39. Reis, F.M., et al. Human placenta as a source of neuroendocrine factors. Biol Neonate, 2001. 79(3-4): p. 150-6. • 40. Reis, F.M. and F. Petraglia. The placenta as a neuroendocrine organ. Front Horm Res, 2001. 27: p. 216-28. • 41. Murphy, V.E., et al. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev, 2006. 27(2): p. 141-69. • 42. Reynolds, L.P., et al. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol, 2006. 572(Pt 1): p. 51-8. • 43. Fowden, A.L., et al. The placenta and intrauterine programming. J Neuroendocrinol, 2008. 20(4): p. 439-50. • 44. Khong, T.Y. Placental vascular development and neonatal outcome. Semin Neonatol, 2004. 9(4): p. 255-63. 33

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015