Views
3 years ago

Neurobiología de estrés temprano - Capítulo 6 - GB Acosta

  • Text
  • Stess
  • Hdac
  • Inhibidoresdehdac
  • Separacionmaterna
  • Estrespostnatal
  • Estresprenatal
  • Ejehpa
  • Gabrielabeatrizacosta
  • Gbacosta
  • Cerebro
  • Efectos
  • Estudios
  • Maternal
  • Trastornos
  • Bdnf
  • Respuesta
  • Vida
  • Desarrollo
  • Prenatal
Consecuencias a largo plazo de la exposición al estrés en la vida temprana: mecanismos endócrinos, neuroquímicos y epigenéticos. Gabriela Beatriz Acosta

GB

GB Acosta, J Manzanares Robles // Neurobiología del estrés temprano. Respuesta del estrés durante la programación de la vida temprana. rosci.24 (2001) 211-215. • 137. R.D. Hawkins, H. Son, O. Arancio. Nitric oxide as a retrograde messenger during long-term potentiation in hippocampus, Prog Brain Res. 118 (1998) 155-172. • 138. V. Lev-Ram, T. Jiang, J. Wood, D.S. Lawrence, R.Y. Tsien. Synergies and coincidence requirements between NO, cGMP, and Ca2+ in the induction of cerebellar long-term depression, Neuron 18 (1997) 1025-1038. • 139. A.L. Tomat, L.C. Veiras, S. Aguirre, H. Fasoli, R. Elesgaray, C. Caniffi, MA Costa, C.T, Arranz. Mild zinc deficiency in male and female rats: early postnatal alterations in renal nitric oxide system and morphology. Nutrition. 29(2013)568-573. • 140. Z. Feng, X. Zou, H. Jia, X. Li, Z. Zhu, X. Liu, P. Bucheli, O. Ballevre, Y. Hou, W. Zhang, J. Wang, Y. Chen, J. Liu. Maternal docosahexaenoic acid feeding protects against impairment of learning and memory and oxidative stress in prenatally stressed rats: possible role of neuronal mitochondria metabolism, Antioxid Redox Signal. 16(2012)275-289. • 141. F.S. Bersani, O.M. Wolkowitz, D. Lindqvist, R. Yehuda, J. Flory,L.M. Bierer, I. Makotine, D. Abu-Amara, M. Coy, V.I. Reus, E.S. Epel, C. Marmar, S.H. Mellon. Global arginine bioavailability, a marker of nitric oxide synthetic capacity, is decreased in PTSD and correlated with symptom severity and markers of inflammation, Brain Behav Immun. 1591(2015)30041-30046. • 142. A. Bird. Perceptions of epigenetics, Nature 447(2007) 396-398. • 143. J. Bohacek, I.M. Mansuy. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38 (2013) 220-236. • 144. J.M. Levenson, K.J. O’Riordan, K.D. Brown, M.A. Trinh, D.L. Molfese, J.D. Sweatt. Regulation of histone acetylation during memory formation in the hippocampus, J Biol. Chem. 279 (2004) 40545– 40559. • 145. I. Branchi, N. Francia, E. Alleva E. Epigenetic control of neurobehavioural plasticity: the role of neurotrophins, Behav Pharmacol 15 (2004) 353-362. • 146. K.E. Dennis, P. Levitt. Regional expression of brain derived neurotrophic factor (BDNF) is correlated with dynamic patterns of promoter methylation in the developing mouse forebrain, Brain Res Mol Brain Res. 140(2005) 1-9. • 147. T.L. Roth, F.D. Lubin, A.J. Funk, J.D. Sweatt. Lasting epigenetic influence of early-life adversity on the BDNF gene, Biol Psychiatry 65 (2009) 760-769. • 148. S. St Cyr, P.O. MacGowan. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor. Front Behav Neurosci. 9 (2015)145. • 149. R.H. van der Doelen, I.A. Arnoldussen, H. Ghareh, L. van Och, J.R. Homberg, T. Kozicz. Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain, Dev Psychopathol. 27(2015)123-135. • 150. J.E. Oh, N Chambwe, S Klein, J Gal, S Andrews, G Gleason, R.Shaknovich A. Melnick, F. Campagne, M. Toth. Differential gene body methylation and reduced expression of cell adhesion and neurotransmitter receptor genes in adverse maternal environment, Transl Psychiatry 3 (2013). • 151. X.H. Zhang, N. Jia, X.Y. Zhao, G.K. Tang, L.X. Guan, D. Wang, H.L. Sun, H. Li, Z.L. Zhu. Involvement of pGluR1, EAAT2 and EAAT3 in offspring depression induced by prenatal stress, Neuroscience 250 (2013) 333-341. • 152. M.C. Monteleone, E. Adrover, M.E. Pallarés, M.C. Antonelli, A.C. Frasch, M.A Brocco. Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain, Epigenetics 19 (2013)152-160. • 153. L. Belnoue, N. Grosjean, E., Ladevèze, D.N. Abrous, M. Koehl. Prenatal stress inhibits hippocampal neurogenesis but spares olfactory bulb neurogenesis, PLoS One8(2013)e72972. • 154. P.O. McGowan, A. Sasaki, A.C. D’Alessio, S. Dymov, B. Labonté, M. Szyf, G. Turecki, M.J. Meaney. Epigenetic regulation of the glucocorticoid receptor inhuman brain associates with childhood abuse, Nat Neurosci.12 (2009) 342-348. • 155. C. Murgatroyd, A.V. Patchev, Y. Wu, V. Micale, Y. Bockmuhl, D. Fischer, F. Holsboer, C.T. Wotjak, O.F. Almeida, D. Spengler. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12 (2009) 1559–1566. • 156. A. R. Tyrka, J.K. Lee, J.A. Graber, A.M. Clement, M.M. Kelly, L. DeRose, M. P. Warren, J. Brooks-Gunn. Neuroendocrine predictors of emotional and behavioral adjustment in boys: longitudinal follow-up of a community sample, Psychoneuroendocrinology 37(2012) 2042-2046. 128

• 157. S.R. Alt, J.D. Turner, M.D. Klok, O.C. Meijer, E.A. Lakke, R.H. Derijk, C.P. Muller. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed, Psychoneuroendocrinology 35 (2010) 544–556. • 158. B. Labonte, M. Suderman, G. Maussion, L. Navaro, V. Yerko, I. Mahar, A. Bureau, N. Mechawar, M. Szyf, M.J. Meaney, G.Turecki. Genome-wide epigenetic regulation by early-life trauma, ArchGen Psychiatry 69 (2012a)722–731. • 159. W. S. Xu, R. B. Parmigiani, P.A. Marks, Histone deacetylase inhibitors: molecular mechanisms of action, Oncogene 26 (2007) 5541-5552. • 160. A.G. Kazantsev, L.M. Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders, Nat Rev Drug Discov. 7(2008) 854-868. • 161. M. Dokmanovic, C. Clarke, P.A. Marks. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res. 5 (2007) 981–989. • 162. M. Dragunow, J.M. Greenwood, R.E. Cameron, P.J. Narayan, S.J. O’Carroll, A.G. Pearson, H.M. Gibbons. Valproic acid induces caspase 3-mediated apoptosis in microglial cells, Neuroscience 140 (2006) 1149-1156. • 163. P.S. Chen, C.C. Wang, C.D. Bortner, G.S. Peng, X. Wu, H. Pang, R.B. Lu, P.W. Gean, D.M. Chuang, J.S. Hong. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity, Neuroscience. 149(2007)203-212. • 164. H. J. Kim, M. Rowe, M. Ren, J.S. Hong, P.S. Chen, D.M. Chuang. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action, J Pharmacol Exp Ther. 321(2007) 892-901. • 165. P.S. Chen, G.S. Peng, G. Li, S. Yang, X. Wu, C.C. Wang, B. Wilson, R.B. Lu, P.W, Gean, D.M. Chuang, J.S. Hong. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes, Mol Psychiatry 11(2006) 1116-11125. • 166. X. Wu, P.S. Chen, S. Dallas, B. Wilson, M.L. Block, C.C. Wang, H. Kinyamu, N. Lu, X. Gao, Y. Leng, D.M. Chuang, W. Zhang, R.B. Lu, J.S. Hong. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons, Int J Neuropsychopharmacol. 11(2008)1123-1134. • 167. M. Kilgore, C.A. Miller, D.M. Fass, K. M. Hennig, S.J. Haggarty, J,D. Sweatt, G. Rumbaugh. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease, Neuropsychopharmacology, 35(2010)870-80. • 168. S.Y. Cong, B.A. Pepers, B.O. Evert, D.C. Rubinsztein, R.A. Roos, G.J. van Ommen, J.C. Dorsman, Mutant huntingtin represses CBP, but not p300, by binding and protein degradation, Mol Cell Neurosci.30 (2005) 12–23. • 169. R.N. Saha, K. Pahan. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis, Cell Death Differ. 13 (2005) 539–550. • 170. D. C. Lagace, M.W. Nachtigal. Inhibition of histone deacetylase activity by valproic acid blocks adipogenesis, J Biol Chem. 279(2004) 18851-18860. • 171. R.A. Blaheta, M. Michaelis, P.H, Driever, J, Jr. Cinatl. Evolving anticancer drug valproic acid: insights into the mechanism and clinical studies, Med Res Rev. 25 (2005) 383-397. • 172. G. Koren, A. A. Nava-Ocampo, M.E. Moretti, R. Sussman, I. Nulman. Major malformations with valproic acid, Can Fam Physician, 52 (2006) 444-447. • 173. J. Koch, S. Gärtner, C.M. Li, L.E. Quintern, K. Bernardo, O. Levran, D. Schnabel, R.J. Desnick, E.H. Schuchman, K. Sandhoff. Molecular cloning and characterization of a full-length complementary DNA encoding human acid ceramidase. Identification of the first molecular lesion causing Farber disease, J Biol Chem. 271(1996) 33110-33115. • 174. P.G. Williams, J.H. Hersh. A male with fetal valproate syndrome and autism, Dev Med Child Neurol. 39(1997) 632-634. • 175. A.D. Rasalam, H. Hailey, J.H. Williams, S.J. Moore, P.D. Turnpenny, D.J. Lloyd, J.C. Dean. Characteristics of fetal anticonvulsant syndrome associated autistic disorder, Dev Med Child Neurol.47(2005)551-555. • 176. N. Carey, N.B. La Thangue. Histone deacetylase inhibitors: gathering pace, Curr. Op in Pharmacol 6 (2006)369–375. • 177. M. Minamiyama, M. Katsuno, H. Adachi, M. Waza, C. Sang, Y. Kobayashi, F. Tanaka, M. Doyu, A. Inukai, 129

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015