Views
8 years ago

Psicofarmacología 69

  • Text
  • Clinico
  • Metabolico
  • Metabolico
  • Antipsicoticos
  • Hemostatica
  • Endotelial
  • Aterogenesis
  • Postraumatico
  • Gsk
  • Vulnerabilidad
  • Endofenotipos
  • Neurobiologia
  • Bipolar
Revista Latinoamericana de Psicofarmacología y Neurociencia.

Psicofarmacología 11:69, Agosto 2011 los temporales de regulación (70). Por otra parte, el factor de von Willebrand factor y el tPA son marcadores potenciales de daño endotelial in vivo, produciendo agregación plaquetaria y adhesión al endotelio, participando en la progresión de la placa de ateroma. También está asociado con predicción de eventos adversos como infarto de miocardio y pobres resultados luego de cirugía arterial, posiblemente a través de la promoción de la formación de trombos. Los episodios de estrés agudo activan la cascada de la coagulación y la fibrinólisis de manera simultánea, pero en los sujetos con deterioro de la función endotelial anticoagulante y aterosclerosis, como consecuencia de la disfunción previa de endotelinas (v-CAM-1, s-CAM, E-selectina, ICAM-1)en situaciones de estrés crónico como en TEPT, la actividad pro-coagulante puede sobrepasar los mecanismos anticoagulantes y promover un estado de hipercoagulabilidad como factor de riesgo de eventos coronarios. El TEPT como modelo de estrés psicosocial crónico refleja este último estado como se desprende de los valores encontrados en el presente estudio (71). Dado que los eventos iniciales en ateroesclerosis se asocian con la expresión de moléculas de adhesión endoteliales, que a su vez son inhibidas por activación de receptores de proliferación de peroxisomas, se genera una situación de equilibrio que limita la inflamación crónica mediada por v-CAM-1 e ICAM-1, sin afectar los fenómenos de inflamación agudos mediados por e-Selectina y la aglutinación de leucocitos (72) (figura 13), pero el balance se rompe en condiciones de estrés crónico como en TEPT a través de una elevación de niveles de e- Selectina, fvW y tPA (73). Dado que estas modificaciones pueden responder a múltiples desencadenantes, como factores de riesgo cardiovascular, artritis reumatoidea, trastornos endocrinos y metabólicos, incluso hábitos de salud como tabaquismo, sedentarismo, consumo de alcohol y obesidad, además de edad y género (74), se tuvo en cuenta aparear la muestra clínica por edad y género con controles sanos. Por otra parte, la asociación de MMP-9, TEPT y ateromatosis, pareciera representar un proceso más tardío, ya que alteran la estabilidad de la placa fibrosa, disolviendo los puentes de colágeno y disminuyendo su síntesis, con el riesgo subsecuente de formación de trombos y eventos isquémicos agudos (75). Esto podría explicar en parte los valores bajos de estos marcadores, así como de TIM-1, y la ausencia de significación estadística para las diferencias entre ambos grupos de TEPT y controles. Las limitaciones del estudio surgen de la muestra relativamente pequeña, la falta de seguimiento longitudinal, y omisión de posibles factores de confusión derivados de comportamientos de riesgo no evaluados en el estudio (ej.: número de cigarrillos consumidos o ingesta de comidas con alto tenor de lípidos y sal), pero que podrían estar asociados con el comienzo de los síntomas de TEPT. Conclusiones Se puede concluir del presente estudio que hay una relación continua entre la severidad de los síntomas de TEPT y los niveles plasmáticos de marcadores de disfunción endotelial. Este vínculo puede explicar la asociación entre la probabilidad de desarrollar enfermedades cardiovasculares y aterogénesis y los eventos traumáticos conducentes a desarrollar TEPT en el nivel de la respuesta vascular inflamatoria común. Son necesarios más estudios de tipo longitudinal para valorar el posible rol antecedente del evento traumático o TEPT en el desarrollo de patología cardiovascular, así como investigar la relación de los cambios neuro-hormonales como hiperactividad simpática adrenal, disfunción del eje hipotálamo-hipófiso-suprarrenal e hiper-cortisolemia en la disfunción endotelial de pacientes con TEPT, ya que estos factores neuroendócrinos podrían afectar la función endotelial de manera directa o indirecta. Referencias bibliográficas 1. López-Ibor AJJ, Valdés-Miyar, M (dir.) (2002). DSM-IV-TR. Manual diagnóstico y estadístico de los trastornos mentales. Texto revisado. Barcelona: Masson. 2. Kessler, RC,Sonnega, A, Bromet, E, Hughes, M, Nelson, CB. Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry.1995; 52:1048–60. 3. Spindler, H, Pedersen, SS. Posttraumatic stress disorder in the wake of heart disease: prevalence, risk factors, and future research directions.Psychosom Med.2005; 67:715–23. 4. Updesh, SB, Rohit, A. Cardiovascular manifestations of posttraumatic stress disorder. J Natl Med Assoc. 2007; 99:642–9. 5. Rocha, LP, Peterson, JC, Meyers, B, Boutin- Foster, C, Charlson, ME, Jayasinghe, N, et al. Incidence of Posttraumatic Stress Disorder (PTSD) after Myocardial Infarction (MI) and Predictors of PTSD Symptoms Post-MI. A Brief Report The International Journal of Psychiatry in Medicine. 2008; 38:297–306. 6. Kubzansky, LD. Is PTSD related to development of heart disease? An update. Cleve Clin J Med. 2009;76:s60–5 7. Von Känel, R, Hepp, U, Traber, R, Kraemer, B, Mica, L, Keel, M, et al. Measures of endotelial dysfunction in plasma of patients with posttraumatic stress disorder. Psychiatry Res. 2008; 158:363–73. 8. Vivanco, F, Martín-Ventura, JL, Durán, MC, Barderas, MG, Blanco-Colio, L, Dardé, VM, et al. Quest for novel cardiovascular biomarkers by proteómica analysis. J Proteome Res. 2005; 4: 1181–91. 9. Constans, J, Conri, C. Circulating markers of endothelial function in cardiovascular disease. Clin Chem Acta. 2006; 368:33–47. 10. Ridker, PM, Brown, NJ, Vaughan, DE, Harrison, DG; Metha, JL. Established and emerging plasma biomarkers in the prediction of EDITORIAL SCIENS // 29

Dr. Daniel Serrani first atherothrombotic events. Circulation. 2004; 109:6–19. 11. Szimitko, PE, Wang, CH, Weisel, RD, De Almeida, JR, Anderson, TJ, Verma, S. New markers of inflammation and endothelial cell activation.Part I.Circulation. 2003; 108:1917–23. 12. Mulvihill, N, Foley, B, Crean, P, Walsh, M. Prediction of cardiovascular risk using soluble cell adhesion molecules. Eur Heart J. 2002; 23:1569–74 13. Martín, JL, Blanco, LM, Tuñon J, Muñoz, B, Madrigal, J, Moreno, JA, et al. Biomarcadores en la medicina cardiovascular. Rev Esp Cardiol.2009; 62:677–88. 14. Galán A, Formiguera, X, Rey-Joly, C. Dimetil-arginina-asimétrica como marcador de riesgo cardiovascular. Med Clin (Barc). 2008; 131:271–5. 15. Von Känel, R, Kraemer, B, Saner, H, Schid, JP, Abbas, CC, Begré, S. Posttraumatic stress disorder and dyslipidemia: previous research and novel findings from patients with PTSD caused by myocardial infarction. World J Biol Psychiatry. 2010; 11:141–7. 16. Lowe GD, Yarnell JW, Rumley A, Bainton D, Sweetnam PM. C-Reactive protein, fibrin D- dimer, and incident ischemic heart disease in the speedwell study- Are inflammation and fibrin turnover linked in pathogenesis? Arterioscler Thromb Vasc Biol. 2005; 21: 603–10. 17. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multi-step paradigm. Cell.1994; 76: 301–14. 18. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium underflow. Blood. 2005; 106:584–92. 19. Ceriello A, Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesión molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes. 2004; 23:701–10. 20. Barreiro O, Yañez M, Serrador JM, Montoya MC, Vicente- Manzanares M, Tejedor R, et al. Dynamic interaction of V-CAM-1 and ICAM-1 with moesinandezrinin a novel endothelial docking structure for adherent leukocytes. J Cell Biol. 2002; 157:1233–45. 21. Lopes-Virella M, Carter R, Gillbert G, Klein R, Jaffa M, Jenkins A et al. Risk Factors Related to Inflammation and Endothelial Dysfunction in the DCCT/EDIC Cohort and Their Relationship With Nephropathy and Macrovascular Complications. Diabetes Care. 2008; 31:2006–12. 22. Mc Dade TW, Hawkley LC, Cacioppo JT. Psychosocial and Behavioral Predictors of Inflammation in Middle-Aged and Older Adults: The Chicago Health, Aging, and Social Relations Study. Psychosom Med 2006; 68: 376-381. 23. Hamer M, Williams E, Vuonovirta R, Giacobazzi P, Gibson EL, Steptoe A. The Effects of Effort-Reward Imbalance on Infl ammatory and Cardiovascular Responses to Mental Stress. Psychosom Med 2006; 68: 408-413. 24. Miller GE, Rohleder N, Stetler C, Kirschbaum C. Clinical Depression and Regulation of the Inflammatory Response During Acute Stress. Psychosom Med 2005; 67: 679-687. 25. Nasermoaddeli A, Sekine M, Kagamimori S. Gender Differences in Associations of C- Reactive Protein With Atherosclerotic Risk Factors and Psychosocial Characteristics in Japanese Civil Servants. Psychosom Med 2006; 68: 58-63. 26. Cohen S, William JD, Skoner DP. Psychological stress, cytokine production, and severity of upper respiratory illness. Psychosom Med 1999; 61: 175-80. 27. Miller GE, Rohleder N, Cole SW. Chronic Interpersonal Stress Predicts Activation of Proand Anti-Infl ammatory Signaling Pathways 6 Months Later. Psychosom Med 2009; 71: 57-62. 28. Jeanmonod P, von Känel R, Maly FE, Fischer JE. Elevated Plasma C-Reactive Protein in Chronically Distressed Subjects Who Carry the A Allele of the TNF-a-308 G/A Polymorphism. Psychosom Med 2004; 66: 501-506. 29. Garvin P, Nilsson L, Carstensen J, Jonasson L, Kristenson M. Plasma Levels of Matrix Metalloproteinase-9 are Independently Associated With Psychosocial Factors in a Middle-Aged Normal Population. Psychosom Med 2009; 71: 292-300. 30. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays. 1992; 14(7):455- 463. 31. Schönbeck U, Mach F, Sukhova G, Murphy C, Bonnefoy J, Fabunmi R et al. Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes. A role for CD40 signaling in plaque rupture? Circ Res 1997; 81: 448-54. 32. Vempati P, Karagiannis ED, Popel AS. A biochemical model of matrix metalloproteinase 9 activation and inhibition. J Biol Chem. 2007; 282:37585-37596. 33. It H, Hontani N, Toshida I, Oka M, Sato T, Akiba S. Group IVA Phospholipase A2-associated production of MMP-9 in macrophages and formation of athero¬sclerotic lesions Biol Pharm Bull 2008; 31(3):363-8. 34. Abilleira S, Bevan S, Markus HS. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J Med Genet 2006; 43(12): 897-901. 35. Packard R, Libby P. Inflammation in Atherosclerosis: From Vascular Biology to Biomarker Discovery and Risk Prediction. Clin Chem 2008; 54: 24-38. 36. Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 2001; 280 (1):C53–C60. 37. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 1995; 27(6):1281–1292. 38. McDermott JR. Studies on the catabolism of Ng-methylarginine, Ng, Ng-dimethylarginine and Ng, Ng-dimethylarginine in the rabbit. Biochem J 1976; 154: 179-84. 39. Meinitzer A, Seelhorst U, Wellnitz B, et al. Asymmetrical dimethylarginine independently predicts total and cardiovascular mortality in individuals with angiographic coronary artery disease (the Ludwigshafen Risk and Cardiovascular Health study). Clin Chem 2007; 53: 273-83. 40. Boger RH, Sydow K, Borlak J, et al. LDL cholesterol up-regulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 2000; 87: 99- 105. 41. Dichtl W, Nilsson L, Goncalves I, et al. Very low-density lipoprotein activates nuclear factorkappa B in endothelial cells. Circ Res. 1999; 84:1085-1094. 42. Palmer RM, Ashton DS, Moncada S. Vascular endotelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333:664-666. 43. Sibal L, Agarwal SC, Home PD, Boger RH. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr Cardiol Rev. 2010; 6(2):82-90. 44. Boger, R.H.; Sullivan, L.M.; Schwedhelm, 30 // EDITORIAL SCIENS

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015