Views
4 years ago

87 - M Zorrilla Zubilete - Agosto 2014

  • Text
  • Histones
  • Histones
  • Zubilete
  • Depression
  • Depresion
  • Histonas
  • Histonas
  • Epigenesis
  • Tratamiento
  • Hipocampo
  • Bdnf
  • Cromatina
  • Mecanismos
  • Niveles
  • Cerebro
  • Genes
  • Histonas
Rol de la acetilación y metilación de histonas en una nueva generación de antidepresivos

Dra. María

Dra. María Zorrilla Zubilete caracterizadas por separado. Por ejemplo, las modificaciones epigenéticas que ocurren en neuronas glutamatérgicas piramidales en la corteza prefrontal son probablemente muy diferentes de los que ocurren en varios subtipos diferentes de interneuronas GABAérgicas, astrocitos y oligodendrocitos. Afortunadamente, estamos viendo la aparición de herramientas que permiten la investigación específica del tipo celular, de las modificaciones de la cromatina en un tejido heterogéneo como el cerebro (203). Para una comprensión completa de los mecanismos epigenéticos de estrés y la acción antidepresiva, se debe hacer la transición a escala del genoma. Como se señaló anteriormente, la combinación de numerosas modificaciones de la cromatina (204) permitirá el trazado del epigenoma antidepresivo. Estos son solo algunos ejemplos de las nuevas líneas de investigación que potencialmente podrían revelar mecanismos fundamentalmente nuevos que controlen los fenómenos relacionados con el estrés. Por último, ha habido un interés, en las posibles aplicaciones terapéuticas de fármacos dirigidos a enzimas modificadores de la cromatina (211). Por ejemplo, los inhibidores de HDAC que ejercen respuestas de tipo antidepresivo potentes en diversos modelos animales. Si tales fármacos ofrecen posibilidades realistas para el descubrimiento de fármacos sigue siendo incierto, dado que la mayoría de las proteínas de modificación en la cromatina se expresan ampliamente en todo el cerebro y en los tejidos periféricos. Por otra parte, no hay duda de que la caracterización epigenética del estrés por diferentes modelos revelará una visión mucho más completa de la gama de proteínas y ncRNAs que median la patología inducida por el estrés, la reversión de la patología con un tratamiento antidepresivo y el desarrollo de dicha patología en individuos resistentes. Este conocimiento proporcionará por primera vez una guía general para los futuros esfuerzos de descubrimiento de fármacos. Es evidente que la modificación de histonas tiene un rol importante en la patofisiología de la depresión. Dependiendo de la región del cerebro y de la modificación de histonas involucrada se activará o reprimirá la expresión de genes asociados con su patofisiología. La gran expectativa es desarrollar estudios de genoma amplio que contribuyan al desarrollo de nuevos biomarcadores de la enfermedad y de esta forma contribuir a optimizar el tratamiento antidepresivo. Referencias bibliográficas • Andrus BM, Blizinsky K, Vedell PT, Dennis K, Shukla PK, et al. 2012. Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models. Mol. Psychiatry 17:49–61. • Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, et al. 2010. Early life programming and neurodevelopmental disorders. Biol. Psychiatry 68:314–19. • Barhwal K, et al. (2009) Acetyl-L-carnitine (ALCAR) prevents hypobaric hypoxia-induced spatial memory impairment through extracellular related kinase-mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience 161(2):501–514. • Berger SL. 2007. The complex language of chromatin regulation during transcription. Nature 447:407–12. • Berman RM, et al. (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354. • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, et al. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–68. • Bird A. 2007. Perceptions of epigenetics. Nature 447:396–98. • Bird A. 2008. The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem. Soc. Trans. 36:575–83. • Chahrour M, Jung SY, ShawC,ZhouX,Wong ST, et al. 2008. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–29. • Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ. 2006. Maternal care associated with methylation of the estrogen receptor-α1b promoter and estrogen receptor-α expression in the medial preoptic area of female offspring. Endocrinology 147:2909–15. • Champagne FA. 2008. Epigenetic mechanisms and the transgenerational effects of maternal care. Front. Neuroendocrinol. 29:386–97. • Chertkow-Deutsher Y, Cohen H, Klein E, Ben- Shachar D. 2010. DNA methylation in vulnerability to post-traumatic stress in rats: evidence for the role of the post-synaptic density protein Dlgap2. Int. J. Neuropsychopharmacol. 13:347–59. • Cheung P, Allis CD, Sassone-Corsi P. 2000. Signaling to chromatin through histone modifications. Cell 103:263–71. • Christoffel DJ, Golden SA, Russo SJ (2011) Structural and synaptic plasticity in stress-related disorders. Rev Neurosci 22(5):535–549. • Chrousos GP. 2009. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5:374–81. • Covington HE III, Maze I, LaPlantQ, VialouV,Ohnishi Y, et al. 2009. Antidepressant actions of histone deacetylase inhibitors. J. 26 // EDITORIAL SCIENS

Psicofarmacología 14:87, Agosto 2014 Neurosci. 22:11451–60. • Covington HE III, Maze I, Sun H, Bomze HM, DeMaio KD, et al. 2011. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–70. • Covington HE III, Vialou VF, LaPlant Q, Ohnishi YN, Nestler EJ. 2011. Hippocampaldependent antidepressant-like activity of histone deacetylase inhibition. Neurosci. Lett. 493:122–26. • de Kloet ER, Jo¨.els M, Holsboer F. 2005. Stress and the brain: from adaptation to disease. Nat. Rev.Neurosci. 6:463–75 • Djupedal I, Ekwall K. 2009. Epigenetics: heterochromatin meets RNAi. Cell Res. 19:282–95 • Duman RS, Monteggia LM. 2006. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59:1116–27. • Edwards JR, O’Donnell AH, Rollins RA, Peckham HE, Lee C, et al. 2010. Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res. 20:972–80. • Elliott E, Ezra-Nevo G, Regev L, Neufeld- Cohen A, Chen A. 2010. Resilience to social stress coincides with functional DNA methylation of the Crf gene in adult mice. Nat. Neurosci. 13:1351–3. • Espallergues J, et al. (2012) HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J Neurosci 32(13):4400–4416. • Essex MJ, Thomas BoyceW, Hertzman C, Lam LL, Armstrong JM, et al. 2011. Epigenetic vestiges of early developmental adversity: childhood stress exposure and DNA methylation in adolescence. Child Dev. In press, doi: 10.1111/j.1467-8624.2011.01641.x • Feinberg AP. 2007. Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–40. • Fyffe SL, Neul JL, Samaco RC, Chao HT, Ben- Shachar S, et al. 2008. Deletion of Mecp2 in Sim1- expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron 59:947–58. • Gibney ER, Nolan CM. 2010. Epigenetics and gene expression. Heredity 105:4–13. • Golden SA, et al. (2013) Epigenetic regulation of RAC1 induces synpatic remodeling in stress disorders and depression. Nat Med,10.1038/nm.3090. • Gould TD, O’Donnell KC, PicchiniAM,DowER, Chen G, Manji HK. 2008. Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice. Behav. Brain Res. 189:117–25. • Hackman DA, Farah MJ, Meaney MJ. 2010. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat. Rev. Neurosci. 11:651–59. • Hao Sheng Sun, Pamela J Kennedy and Eric J Nestler. Epigenetics of the Depressed Brain: Role of Histone Acetylation and Methylation. Neuropsychopharmacology Reviews (2013) 38, 124–137. • Hervouet E, Vallette FM, Cartron PF. 2009. Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 4:487–99. • Hobara T, Uchida S, Otsuki K, Matsubara T, Funato H, et al. 2009. Altered gene expression of histone deacetylases in mood disorder patients. J. Psychiatr. Res. 44:263–70. • Hollis F, Wang H, Dietz D, Gunjan A, Kabbaj M. 2010. The effects of repeated social defeat on long-term depressive-like behavior and shortterm histone modifications in the hippocampus in male Sprague-Dawley rats. Psychopharmacology 211:69–77. • Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS. 2009. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl. Acad. Sci. USA 106:20912–17. • Hyman SE, Nestler EJ. 1996. Initiation and adaptation: a paradigm for understanding psychotropic drug action. Am. J. Psychiatry 153:151–62. • Im HI, Hollander JA, Bali P, Kenny PJ. 2010. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat. Neurosci. 13:1120–27. • Jenuwein T, Allis CD. 2001. Translating the histone code. Science 293:1074–80. • Jiang Y, Langley B, Lubin FD, Renthal W, Wood MA, et al. 2008. Epigenetics in the nervous system. J. Neurosci. 28:11753–59. • Keller S, SarchiaponeM, Zarrilli F, Videtic A, Ferraro A, et al. 2010. Increased BDNF promotermethylation in the Wernicke area of suicide subjects. Arch. Gen. Psychiatry 67:258–67. • Kim JK, Samaranayake M, Pradhan S. 2009. Epigenetic mechanisms in mammals. Cell. Mol. Life Sci. 66:596–612. • Korzus E, Rosenfeld MG, Mayford M. 2004. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron 42:961–72. • KrishnanV,Han MH,GrahamDL, Berton O, RenthalW, et al. 2007. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404. • LaPlant Q, Vialou V, Covington HE III, Dumitriu D, Feng J, et al. 2010. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 13:1137–43. • Levine A, Worrell TR, Zimnisky R, Schmauss C. 2012. Early life stress triggers sustained changes in histone deacetylase expression and histone H4 modifications that alter responsiveness to adolescent antidepressant treatment. Neurobiol. Dis. 45:488–98. • Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, et al. 1997. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–62. • Lolait SJ, Stewart LQ, Jessop DS, Young WS III, O’Carroll AM. 2007. The hypothalamic-pituitaryadrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 148:849–56. • Lupien SJ, McEwen BS, Gunnar MR, Heim C. 2009. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10:434–45. • Lyons DM, Parker KJ, Schatzberg AF. 2010. Animal models of early life stress: implications for understanding resilience. Dev. Psychobiol. 52:616–24. • Maze I, Covington HE III, Dietz DM, LaPlant Q, Renthal W, et al. 2010. Essential role of the histone methyltransferase G9a in cocaineinduced plasticity. Science 327:213–16. • McEwen BS. 2008. Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 583:174–85. • Meaney MJ, SzyfM. 2005. Environmental programming of stress responses through DNA methylation: life at the interface between a dynamic environment and a fixed genome. Dialogues Clin. Neurosci. 7:103–23. • Melas PA, Rogdaki M, Lennartsson A, Bjork K, Qi H, et al. 2011. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J.Neuropsychopharmacol. 15:669–79. • Miller CA, Sweatt JD. 2007. Covalent modification of DNA regulates memory formation. Neuron 53:857–69. • Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, et al. 2009. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci. 12:1559–66. • Murrough JW, et al. (2012) Rapid and longerterm antidepressant effects of repeated ketamine infusions in treatment-resistant major EDITORIAL SCIENS // 27

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015