Views
4 years ago

9 - RM Ferrari - Mayo de 2010

  • Text
  • Drugs
  • Polymorphism
  • Hypertension
  • Pharmacogenomics
  • Pharmacogenetics
  • Antihipertensivas
  • Hta
  • Ferrari
  • Genes
  • Receptor
  • Arterial
  • Antihypertensive
  • Pacientes
  • Drogas
  • Polimorfismo
  • Estudios
  • Polimorfismos
  • Respuesta
Farmacogenética y farmacogenomia en hipertensión arterial: perspectivas terapéuticas y nuevas fronteras

Referencias

Referencias bibliográficas 1. Rosamond W, Flegal K, Furie K et al. Heart Disease and Stroke Statistics 2008 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation117. 2008; (4), E25-E146. 2. Comparison of propranolol and hydrochlorothiazide for the initial treatment of hypertension. II. Results of long-term therapy. Veterans Administration Cooperative Study Group on Antihypertensive Agents. JAMA 1982; 248,2004-2011. 3. Materson BJ. Variability in response to antihypertensive drugs. Am. J. Med.2007; 120,S10-S20. 4. Turner ST, Bailey KR, Fridley BL, et al.: Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008; 52,359-365. 5. Haas M, Yilmaz N, Schmidt A, et al. Angiotensin-converting enzyme gene polymorphism determines the antiproteinuric and systemic hemodynamic effect of enalapril in patients with proteinuric renal disease. Austrian Study Group of the Effects of Enalapril Treatment in Proteinuric Renal Disease. Kidney Blood Press. Res 1998;21. 66-69. 6. Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. C825T polymorphism of the G protein β(3)-subunit and antihypertensive response to a thiazide diuretic. Hipertensión. 2001; 37,739-743. 7. Liu J, Liu ZQ, Yu BN et al. β1-adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin. Pharmacol. Ther. 2006; 80,23-32. 8. Siest G, Jeannesson E, Visvikis-Siest S. Enzymes and pharmacogenetics of cardiovascular drugs. Clin. Chim. Acta 2007; 381,26-31. 9. Flaa A, Kjeldsen SE. Are all the hypertensives made equal? Herz.31,323-330 (2006). 10. Israili ZH, Hernandez-Hernandez R, Valasco M: The future of antihypertensive treatment. Am. J. Ther.2007; 14,121-134. 11. Filigheddu F, Troffa C, Glorioso N. Pharmacogenomics of essential hypertension: are we going the right way? Cardiovasc. Hematol. Agents Med. Chem.4,7-15 (2006). 12. Mellen PB, Herrington DM. Pharmacogenomics of blood pressure response to antihypertensive treatment. J. Hypertens.2005; 23,1311-1325. 13. Saavedra JM. Studies on genes and hypertension: a daunting task. J. Hypertens. 2005;23,929-932. 14. Manunta P, Bianchi G. Pharmacogenomics and pharmacogenetics of hypertension: update and perspectives - the adducin paradigm. J. Am. Soc. Nephrol. 2006;17,S30- S35. 15. Kurland L, Lind L, Melhus H. Using genotyping to predict responses to anti-hypertensive treatment. Trends Pharmacol. Sci.2005; 26,443-447. 16. Arnett DK, Claas SA, Glasser SP. Pharmacogenetics of antihypertensive treatment. Vascul. Pharmacol. 2006; 44,107-118. 17. Johnson JA, Turner ST. Hypertension pharmacogenomics: current status and future directions. Curr. Opin. Mol. Ther. 2005;7,218-225. 18. Schwartz GL, Turner ST. Pharmacogenetics of antihypertensive drug responses. Am. J. Pharmacogenomics. 2004; 4,151-160. 19. Kurland L, Hallberg P, Melhus H et al. The relationship between the plasma concentration of irbesartan and the antihypertensive response is disclosed by an angiotensin II type 1 receptor polymorphism: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs. Atenolol (SILVHIA) Trial. Am. J. Hypertens.2008; 21,836- 839. 20. Lynch AI, Boerwinkle E, Davis BR et al.: Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA. 2008; 299,296-307. 21. Langaee TY, Gong Y, Yarandi HN et al. Association of CYP3A5 polymorphisms with hypertension and antihypertensive response to verapamil. Clin. Pharmacol. Ther.2007; 81,386-391. 22. Pacanowski MA, Gong Y, Cooper-Dehoff RM et al. β- adrenergic receptor gene polymorphisms and β-blocker treatment outcomes in hypertension. Clin. Pharmacol. Ther. 2008; 84,715-721. 23. Lemaitre RN, Heckbert SR, Sotoodehnia N et al. β1- and β2-adrenergic receptor gene variation, β-blocker use and risk of myocardial infarction and stroke. Am. J. Hypertens.2008; 21,290-296. 24. Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA. β2-adrenergic receptor genotype and survival among patients receiving β-blocker therapy after an acute coronary syndrome. JAMA. 2005; 294,1526-1533. 25. Maitland-van der Zee AH, Turner ST, Schwartz GL, Chapman AB, Klungel OH, Boerwinkle E. A multilocus approach to the antihypertensive pharmacogenetics of hydrochlorothiazide. Pharmacogenet. Genomics. 2005; 15,287-293. 26. Beitelshees AL, Gong Y, Wang D, et al. KCNMB1 genotype influences response to verapamil SR and adverse outcomes in the International Verapamil SR/Trandolapril Study (INVEST). Pharmacogenet. Genomics. 2007; 17,719-729. 27. Kelley-Hedgepeth A, Peter I, Kip K, et al. The protective effect of KCNMB1 E65K against hypertension is restricted to blood pressure treatment with β-blockade. J. Hum. Hypertens. 2008; 22,512-515. 28. Bremer T, Man A, Kask K, Diamond C. CACNA1C polymorphisms are associated with the efficacy of calcium channel blockers in the treatment of hypertension. Pharmacogenomics. 2007; 7,271-279. 29. Milionis HJ, Kostapanos MS, Vakalis K, et al. Impact of renin-angiotensin-aldosterone system genes on the treatment response of patients with hypertension and metabolic syndrome. J. Renin Angiotensin Aldosterone Syst. 2007; 8,181-189. 30. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hipertensión. 2003; 42,1206-1252. 31. Cutler JA, Davis BR. Thiazide-type diuretics and β- adrenergic blockers as first-line drug treatments for hypertension. Circulation. 2008;117,2691-2704; discussion 2705. 32. Messerli FH, Bangalore S, Julius S. Risk/benefit assessment of β-blockers and diuretics precludes their use for first-line therapy in hypertension. Circulation. 2008; 117,2706-2715; discussion 2715. 33. Turner ST, Chapman AB, Schwartz GL, Boerwinkle E. Effects of endothelial nitric oxide synthase, α-adducin, and other candidate gene polymorphisms on blood pressure response to hydrochlorothiazide. Am. J. Hypertens. 2003; 16,834-839. 34. Rodwell GE, Sonu R, Zahn JM, et al. A transcriptional profile of aging in the human kidney. PLoS Biol. 2004; 2,E427. 35. Manunta P, Lavery G, Lanzani C, et al. Physiological interaction between α-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hipertensión. 2008; 52,366-372. 36. Bangalore S, Parkar S, Grossman E, Messerli FH. A meta-analysis of 94,492 patients with hypertension treated with β blockers to determine the risk of new-onset diabetes mellitus. Am. J. Cardiol. 2007; 100,1254-1262. 37. Schelleman H, Klungel OH, Witteman JC, et al. Angiotensinogen M235T polymorphism and the risk of myocardial infarction and stroke among hypertensive patients on ACE-inhibitors or β-blockers. Eur. J. Hum. Genet. 2007; 15,478-484. 38. Schelleman H, Klungel OH, Witteman JC, et al. Interaction between polymorphisms in the reninangiotensin-system and angiotensin-converting enzyme inhibitor or β-blocker use and the risk of myocardial infarction and stroke. Pharmacogenomics J. 2008;8,400-407. 39. Jauch KW, Hartl W, Guenther B, Wicklmayr M, Rett K, Dietze G. Captopril enhances insulin responsiveness of forearm muscle tissue in non-insulin-dependent diabetes mellitus. Eur. J. Clin. Invest. 1987; 17,448-454. 40. Gluszek J, Jankowska K. Is there relationship between the A1166C polymorphism of the angiotensin II receptor AT1 and plasma renin activity, insulin resistance and reduction of blood pressure after angiotensin-converting enzyme inhibitor therapy? Pol. Arch. Med. Wewn. 2008;118,194- 200. 41. Hingorani AD, Jia H, Stevens PA, Hopper R, Dickerson JE, Brown MJ. Renin-angiotensin system gene polymorphisms influence blood pressure and the response to angiotensin converting enzyme inhibition. J. Hypertens. 1995;13,1602-1609. 42. Dudley C, Keavney B, Casadei B, Conway J, Bird R, Ratcliffe P. Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J. Hypertens. 1996;14,259-262. 43. Bis JC, Smith NL, Psaty BM, et al. Angiotensinogen Met235Thr polymorphism, angiotensin-converting enzyme inhibitor therapy, and the risk of nonfatal stroke or myocardial infarction in hypertensive patients. Am. J. Hypertens. 2003;6,1011-1017. 44. Arnett DK, Davis BR, Ford CE, et al. Pharmacogenetic association of the angiotensin-converting enzyme insertion/deletion polymorphism on blood pressure and cardiovascular risk in relation to antihypertensive treatment: the Genetics of Hypertension-Associated Treatment (GenHAT) study. Circulation.2005; 3374-3383. 45. Filigheddu F, Argiolas G, Bulla E, et al. Clinical variables, not RAAS polymorphisms, predict blood pressure response to ACE inhibitors in Sardinians. Pharmacogenomics9,1419-1427 (2008). 46. Johnson AD, Gong Y, Wang D, et al. Promoter polymorphisms in ACE (angiotensin I-converting enzyme) associated with clinical outcomes in hypertension. Clin. Pharmacol. Ther.85,36-44 (2009). 47. Coy V. Genetics of essential hypertension. J. Am. Acad. Nurse Pract.17,219-224 (2005). 48. Shin J, Johnson JA. Pharmacogenetics of β-blockers. Pharmacotherapy27,874-887 (2007). 49. Filigheddu F, Reid JE, Troffa C, et al. Genetic polymorphisms of the β-adrenergic system: association with essential hypertension and response to β-blockade. Pharmacogenomics J.4,154-160 (2004). 50. Farahani P, Dolovich L, Levine M. Exploring designrelated bias in clinical studies on receptor genetic polymorphism of hypertension. J. Clin. Epidemiol.60,1-7 (2007). 51. Frazier L, Turner ST, Schwartz GL, Chapman AB, Boerwinkle E. Multilocus effects of the renin-angiotensinaldosterone system genes on blood pressure response to a thiazide diuretic. Pharmacogenomics J.4,17-23 (2004). 52. Ziegler A, Konig IR, Thompson JR. Biostatistical aspects of genome-wide association studies. Biom. J.50,8-28 (2008). 53. Brain N Jr, Dominiczak AF. Pharmacogenomics in hypertension: present practicalities and future potential. J. Hypertens.23,1327-1329 (2005). 54. Taylor MR. Pharmacogenetics of the human β-adrenergic receptors. Pharmacogenomics J.7,29-37 (2007). 55. Fornage M. Unraveling hypertension: epigenomics comes of age. Pharmacogenomics8,125-128 (2007). 56. Magnusson Y, Levin MC, Eggertsen R, et al. Ser49Gly of β1-adrenergic receptor is associated with effective β-blocker dose in dilated cardiomyopathy. Clin. Pharmacol. Ther.78,221-231 (2005). 57. Julius S, Nesbitt SD, Egan BM, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N. Engl. J. Med.354,1685-1697 (2006). 58. Lumley T, Rice KM, Psaty BM. Carryover effects after cessation of drug treatment: trophies or dreams? Am. J. Hypertens.21,14-16 (2008). 59. Arnett DK, Tang W, Province MA, et al. nterarm differences in seated systolic and diastolic blood pressure: the Hypertension Genetic Epidemiology Network study. J. Hypertens.23,1141-1147 (2005). 60. Stergiou GS, Baibas NM, Gantzarou AP, et al. Reproducibility of home, ambulatory, and clinic blood pressure: implications for the design of trials for the assessment of antihypertensive drug efficacy. Am. J. Hypertens.15,101- 104 (2002). 22 | Editorial Sciens

Biblioteca

Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar

Editorial Sciens, Todos los Derechos Reservados 2015