GB Acosta, J Manzanares Robles // Neurobiología del estrés temprano. Respuesta del estrés durante la programación de la vida temprana. • 42. Masuyama H, Hiramatsu Y. Effects of a High-Fat Diet Exposure in Utero on the Metabolic Syndrome-Like Phenomenon in Mouse Offspring through Epigenetic Changes in Adipocytokine Gene Expression. Endocrinology [Internet]. 2012 Jun [cited 2015 Oct 21];153(6):2823–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22434078. • 43. Gabory A, Ferry L, Mayeur S, Gallou-kabani C, Gross M, Vige A, et al. Maternal Diets Trigger Sex-Specific Divergent Trajectories of Gene Expression and Epigenetic Systems in Mouse Placenta. PLoS One. 2012;7(11). • 44. Rui L. Energy metabolism in the liver. Compr Physiol [Internet]. 2014 Jan [cited 2016 Jul 3];4(1):177–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24692138. • 45. Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345–53. • 46. Brumbaugh DE, Friedman JE. Developmental origins of nonalcoholic fatty liver disease. Pediatr Res [Internet]. 2014;75(1–2):140–7. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4081536&- tool=pmcentrez&rendertype=abstract. • 47. Stewart MS, Heerwagen MJ, Friedman JE. Developmental Programming of Pediatric Non-Alcoholic Fatty Liver Disease: Redefining the “First-Hit.” Clin Obs Gynecol. 2013;56(3):577–90. • 48. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology [Internet]. 1998;114(4):842–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9547102. • 49. Simino, LAP; Torsoni, MA; Torsoni A. Obesogenic Programming of Foetal Hepatic Metabolism by microRNAs. In: Rajendram, R; Patel, VB; Preedy V, editor. Diet, Nutrition and Fetal Programming. 1st ed. Humana Press; 2017. • 50. Ashino NG, Saito KN, Souza FD, Nakutz FS, Roman EA, Velloso LA, et al. Maternal high-fat feeding through pregnancy and lactation predisposes mouse offspring to molecular insulin resistance and fatty liver. J Nutr Biochem [Internet]. 2012 Apr [cited 2015 Oct 21];23(4):341–8. Available from: http://www.ncbi.nlm.nih.gov/ pubmed/21543214. • 51. Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am J Physiol Endocrinol Metab [Internet]. 2009 Jun [cited 2016 Jun 20];296(6):E1195-209. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19336658. • 52. Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science [Internet]. 2002 Jul 12 [cited 2016 Jun 20];297(5579):240–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12114623. • 53. Li J, Huang J, Li J, Chen H, Huang K, Zheng L. Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol [Internet]. 2012;56(4):900–7. Available from: http://dx.doi.org/10.1016/j.jhep.2011.10.018. • 54. Nathanielsz PW, Zambrano E, Bautista CJ, Cox LA. Maternal obesity has sex-dependent effects on insulin , glucose and lipid metabolism and the liver transcriptome in young adult rat offspring. 2018;19:4611–28. • 55. Wankhade UD, Zhong Y, Kang P, Alfaro M, Sree VC, Pi BD, et al. Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. 2018;(March):1–15. • 56. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, et al. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Invest [Internet]. 2009 Feb 19 [cited 2015 Nov 4];119(2):323–35. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2631287&- tool=pmcentrez&rendertype=abstract. • 57. Thorn SR, Baquero KC, Newsom SA, El Kasmi KC, Bergman BC, Shulman GI, et al. Early life exposure to maternal insulin resistance has persistent effects on hepatic NAFLD in juvenile nonhuman primates. Diabetes. 2014;63(8):2702–13. • 58. Haeusler RA, McGraw TE, Accili D. Metabolic Signalling: Biochemical and cellular properties of insulin receptor signalling. Nat Rev Mol Cell Biol. 2018;19(1):31–44. • 59. Nicholas LM, Rattanatray L, Maclaughlin SM, Ozanne SE, Kleemann DO, Walker SK, et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. 2013. • 60. Bringhenti I, Ornellas F, Martins MA, Mandarim-de-Lacerda CA, Aguila MB. Early hepatic insult in the offspring of obese maternal mice. Nutr Res [Internet]. 2015;35(2):136–45. Available from: http://dx.doi.or- 156
g/10.1016/j.nutres.2014.11.006. • 61. de Paula Simino LA, de Fante T, Figueiredo Fontana M, Oliveira Borges F, Torsoni MA, Milanski M, et al. Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutr Metab (Lond) [Internet]. 2017 Dec 20 [cited 2017 Apr 25];14(1):16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28239403. • 62. Brown MS, Goldstein JL. Selective versus Total Insulin Resistance: A Pathogenic Paradox. Cell Metab. 2008;7(2):95–6. • 63. Ferris HA, Kahn CR. Unraveling the paradox of selective insulin resistance in the liver: The brain-liver connection. Diabetes. 2016;65(6):1481–3. • 64. Li Y-Y. Genetic and epigenetic variants influencing the development of nonalcoholic fatty liver disease. World J Gastroenterol [Internet]. 2012;18(45):6546–51. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3516206&tool=pmcentrez&rendertype=abstract • 65. Smith CJ, Ryckman KK. Epigenetic and developmental influences on the risk of obesity, diabetes, and metabolic syndrome. Diabetes Metab Syndr Obes [Internet]. 2015 Jan 29 [cited 2015 Nov 30];8:295–302. Available from: https://www.dovepress.com/epigenetic-and-developmental-influences-on-the-risk-of-obesity-diabete-peer-reviewed-article-DMSO. • 66. Ozanne SE. Epigenetics and metabolism in 2014: Metabolic programming—knowns, unknowns and possibilities. Nat Publ Gr [Internet]. 2014;11(2):1–2. Available from: http://dx.doi.org/10.1038/nrendo.2014.218%5Cnpapers3://publication/doi/10.1038/nrendo.2014.218. • 67. Fernandez-Twinn DS, Constância M, Ozanne SE. Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol [Internet]. 2015;43:85–95. Available from: http:// dx.doi.org/10.1016/j.semcdb.2015.06.006. • 68. Keleher MR, Zaidi R, Shah S, Oakley ME, Pavlatos C, Idrissi S El, et al. Maternal high-fat diet associated with altered gene expression, DNA methylation , and obesity risk in mouse offspring. 2018;1–28. • 69. Li CCY, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME, et al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. 2013;8(6):602–11. • 70. Seki Y, Suzuki M, Guo X, Glenn AS, Vuguin PM, Fiallo A, et al. In Utero Exposure to a High-Fat Diet Programs Hepatic. 2017;158(April):2860–72. • 71. Panchenko PE, Voisin S, Jouin M, Jouneau L, Prézelin A, Lecoutre S, et al. Expression of epigenetic machinery genes is sensitive to maternal obesity and weight loss in relation to fetal growth in mice. Clin Epigenetics [Internet]. 2016;8(1):22. Available from: http://www.clinicalepigeneticsjournal.com/content/8/1/22. • 72. Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, et al. Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(1–2):91–102. • 73. Casas-Agustench P, Iglesias-Gutiérrez E, Dávalos A. Mother’s nutritional miRNA legacy: Nutrition during pregnancy and its possible implications to develop cardiometabolic disease in later life. Pharmacol Res [Internet]. 2015 Oct [cited 2016 Jun 18];100:322–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26325301 • 74. Zhang J, Zhang F, Didelot X, Bruce KD, Cagampang FR, Vatish M, et al. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genomics [Internet]. 2009;10:478. Available from: http://www.pubmedcentral.nih.gov/articlerender. fcgi?artid=2770530&tool=pmcentrez&rendertype=abstract. • 75. Zheng J, Zhang Q, Mul JD, Yu M, Xu J. Maternal high-calorie diet is associated with altered hepatic microRNA expression and impaired metabolic health in offspring at weaning age. Endocrine. 2016;54(1):70–80. • 76. Puppala S, Li C, Glenn JP, Saxena R, Gawrieh S, Quinn A, et al. Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation. 2018;23:5823–37. • 77. Tsai W-C, Hsu S-D, Hsu C-S, Lai T-C, Chen S-J, Shen R, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest [Internet]. 2012 Aug [cited 2015 Oct 20];122(8):2884–97. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3408747&tool=pmcentrez&rendertype=abstract. • 78. Hsu S-H, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest [Internet]. 2012 Aug [cited 2015 Sep 9];122(8):2871–83. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3408748&tool=pmcentrez&rendertype=abstract. 157
Loading...
Loading...
Av. García del Río 2585 Piso 12 A - C.A.B.A
+54 11 2092 1646 | info@sciens.com.ar
Editorial Sciens, Todos los Derechos Reservados 2015
Políticas de Privacidad