Views
4 years ago

Estrés temprano y sus consecuencias en la vida adulta - Capítulo 5 - J Manzanares Robles y col.

  • Text
  • Neuroplasticidad
  • Alteracionesneuroquimicas
  • Consumodealcohol
  • Stress
  • Respuestaalestres
  • Adolescencia
  • Separacionmaternal
  • Jmanzanaresroble
  • Jorgemanzanares
  • Tempranas
  • Edad
  • Separation
  • Respuesta
  • Desarrollo
  • Modelo
  • Ratones
  • Maltrato
  • Alteraciones
  • Maternal
La exposición a eventos traumáticos durante la infancia constituye un factor de riesgo para el desarrollo de trastornos psiquiátricos, principalmente trastornos de ansiedad y depresión, y problemas relacionados con el consumo de alcohol durante la adolescencia y en la edad adulta. Son pocos los estudios que se han centrado en analizar qué alteraciones neurobiológicas subyacen a esta mayor vulnerabilidad, y menos los que se han centrado en la etapa adolescente. En este sentido, los modelos animales de separación maternal (SM) constituyen una valiosa herramienta para estudiar y caracterizar las consecuencias a corto y largo plazo de los eventos traumáticos tempranos, así como los mecanismos neurobiológicos implicados. En este capítulo se abordan los principales modelos animales de separación maternal, detallando las alteraciones conductuales que se han descrito hasta la actualidad, de entre las que se destaca, un mayor nivel de ansiedad, desarrollo de conductas depresivas y de rasgos representativos de trastornos psicóticos junto con un deterioro cognitivo. Estas alteraciones comportamentales se asocian a cambios en dianas relacionadas con la respuesta al estrés, como el eje hipotálamo-hipofisario-adrenal (Eje HHA), y en los procesos de neurogénesis. Asimismo, la exposición a la SM induce una mayor vulnerabilidad por el consumo y los efectos del alcohol y de la cocaína en roedores, junto con cambios en dianas relacionadas con las propiedades reforzantes de estas drogas, como el sistema opioide y dopaminérgico.

GB Acosta, J

GB Acosta, J Manzanares Robles // Neurobiología del estrés temprano. Respuesta del estrés durante la programación de la vida temprana. • 30. Paternain, L., et al. Postnatal maternal separation modifies the response to an obesogenic diet in adulthood in rats. Dis Model Mech, 2012. 5(5): p. 691-7. • 31. Maniam, J. and M.J. Morris. Long-term postpartum anxiety and depression-like behavior in mother rats subjected to maternal separation are ameliorated by palatable high fat diet. Behav Brain Res, 2010. 208(1): p. 72-9. • 32. Tiba, P.A., S. Tufik, and D. Suchecki. Effects of maternal separation on baseline sleep and cold stress-induced sleep rebound in adult Wistar rats. Sleep, 2004. 27(6): p. 1146-53. • 33. Delavari, F., et al. Effects of Maternal Separation on Nicotine-Induced Conditioned Place Preference and Later Spatial Learning and Memory Function in Adolescent Male Rats. Addict Health, 2016. 8(4): p. 261-269. • 34. Delavari, F., et al. Maternal Separation and the Risk of Drug Abuse in Later Life. Addict Health, 2016. 8(2): p. 107-114. • 35. Cruz, F.C., et al. Maternal separation stress in male mice: long-term increases in alcohol intake. Psychopharmacology (Berl), 2008. 201(3): p. 459-68. • 36. Stanton, M.E., Y.R. Gutierrez, and S. Levine. Maternal deprivation potentiates pituitary-adrenal stress responses in infant rats. Behav Neurosci, 1988. 102(5): p. 692-700. • 37. Macri, S. and G. Laviola.Single episode of maternal deprivation and adult depressive profile in mice: interaction with cannabinoid exposure during adolescence. Behav Brain Res, 2004. 154(1): p. 231-8. • 38. Marco, E.M., et al. Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: altered responses to cannabinoid exposure. Neurosci Biobehav Rev, 2009. 33(4): p. 498-507. • 39. Ellenbroek, B.A. and A.R. Cools. The long-term effects of maternal deprivation depend on the genetic background. Neuropsychopharmacology, 2000. 23(1): p. 99-106. • 40. Garcia-Gutierrez, M.S., et al., Increased vulnerability to ethanol consumption in adolescent maternal separated mice. Addict Biol, 2016. 21(4): p. 847-58. • 41. Cotella, E.M., P.E. Durando, and M.M. Suarez. A double-hit model of stress dysregulation in rats: implications for limbic corticosteroid receptors and anxious behavior under amitriptyline treatment. Stress, 2014. 17(3): p. 235-46. • 42. Marco, E.M., et al. The maternal deprivation animal model revisited. Neurosci Biobehav Rev, 2015. 51: p. 151-63. • 43. Lee, J.H., et al. Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res, 2007. 58(1): p. 32-9. • 44. Daniels, W.M., et al. Maternal separation in rats leads to anxiety-like behavior and a blunted ACTH response and altered neurotransmitter levels in response to a subsequent stressor. Metab Brain Dis, 2004. 19(1-2): p. 3-14. • 45. Vetulani, J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep, 2013. 65(6): p. 1451-61. • 46. Garcia-Gutierrez, M.S., et al. Increased vulnerability to ethanol consumption in adolescent maternal separated mice. Addict Biol, 2015. • 47. Romeo, R.D., et al. Anxiety and fear behaviors in adult male and female C57BL/6 mice are modulated by maternal separation. Horm Behav, 2003. 43(5): p. 561-7. • 48. Kundakovic, M., et al. Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Front Psychiatry, 2013. 4: p. 78. • 49. Lee, H.J., et al. Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats. Mol Psychiatry, 2001. 6(6): p. 610, 725-8. • 50. Kikusui, T. and Y. Mori. Behavioural and neurochemical consequences of early weaning in rodents. J Neuroendocrinol, 2009. 21(4): p. 427-31. • 51. Wigger, A. and I.D. Neumann. Periodic maternal deprivation induces gender-dependent alterations in behavioral and neuroendocrine responses to emotional stress in adult rats. Physiol Behav, 1999. 66(2): p. 293-302. • 52. Parfitt, D.B., et al. Differential early rearing environments can accentuate or attenuate the responses to stress in male C57BL/6 mice. Brain Res, 2004. 1016(1): p. 111-8. • 53. Tractenberg, S.G., et al. An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev, 2016. 68: p. 489-503. • 54. Fabricius, K., G. Wortwein, and B. Pakkenberg. The impact of maternal separation on adult mouse behaviour and on the total neuron number in the mouse hippocampus. Brain Struct Funct, 2008. 212(5): p. 403-16. 104

• 55. Wang, L., J. Jiao, and S.C. Dulawa. Infant maternal separation impairs adult cognitive performance in BALB/ cJ mice. Psychopharmacology (Berl), 2011. 216(2): p. 207-18. • 56. de Azeredo, L.A., et al. Maternal separation induces hippocampal changes in cadherin-1 (CDH-1) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem, 2017. 141: p. 157-167. • 57. Reshetnikov, V.V., et al. Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. Genes Brain Behav, 2018: p. e12541. • 58. Mehta, M. and C. Schmauss. Strain-specific cognitive deficits in adult mice exposed to early life stress. Behav Neurosci, 2011. 125(1): p. 29-36. • 59. Janetsian-Fritz, S.S., et al. Maternal deprivation induces alterations in cognitive and cortical function in adulthood. Transl Psychiatry, 2018. 8(1): p. 71. • 60. Ellenbroek, B.A., P.T. van den Kroonenberg, and A.R. Cools. The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophr Res, 1998. 30(3): p. 251-60. • 61. Millstein, R.A., et al. Effects of repeated maternal separation on prepulse inhibition of startle across inbred mouse strains. Genes Brain Behav, 2006. 5(4): p. 346-54. • 62. Moffett, M.C., et al. Maternal separation alters drug intake patterns in adulthood in rats. Biochem Pharmacol, 2007. 73(3): p. 321-30. • 63. Nylander, I. and E. Roman. Is the rodent maternal separation model a valid and effective model for studies on the early-life impact on ethanol consumption? Psychopharmacology (Berl), 2013. 229(4): p. 555-69. • 64. Roman, E. and I. Nylander. The impact of emotional stress early in life on adult voluntary ethanol intake-results of maternal separation in rats. Stress, 2005. 8(3): p. 157-74. • 65. Gustafsson, L. and I. Nylander. Time-dependent alterations in ethanol intake in male wistar rats exposed to short and prolonged daily maternal separation in a 4-bottle free-choice paradigm. Alcohol Clin Exp Res, 2006. 30(12): p. 2008-16. • 66. Romano-Lopez, A., et al. Maternal separation and proclivity for ethanol intake: a potential role of the endocannabinoid system in rats. Neuroscience, 2012. 223: p. 296-304. • 67. Odeon, M.M., et al. Long-term effects of repeated maternal separation and ethanol intake on HPA axis responsiveness in adult rats. Brain Res, 2017. 1657: p. 193-201. • 68. Portero-Tresserra, M., et al. Maternal separation increases alcohol-drinking behaviour and reduces endocannabinoid levels in the mouse striatum and prefrontal cortex. Eur Neuropsychopharmacol, 2018. 28(4): p. 499-512. • 69. de Almeida Magalhaes, T., et al. Maternal separation affects expression of stress response genes and increases vulnerability to ethanol consumption. Brain Behav, 2018. 8(1): p. e00841. • 70. Li, Y., T.E. Robinson, and S. Bhatnagar. Effects of maternal separation on behavioural sensitization produced by repeated cocaine administration in adulthood. Brain Res, 2003. 960(1-2): p. 42-7. • 71. Kikusui, T., S. Faccidomo, and K.A. Miczek. Repeated maternal separation: differences in cocaine-induced behavioral sensitization in adult male and female mice. Psychopharmacology (Berl), 2005. 178(2-3): p. 202-10. • 72. Gracia-Rubio, I., et al. Maternal Separation Impairs Cocaine-Induced Behavioural Sensitization in Adolescent Mice. PLoS One, 2016. 11(12): p. e0167483. • 73. Heim, C., et al. The role of early adverse life events in the etiology of depression and posttraumatic stress disorder. Focus on corticotropin-releasing factor. Ann N Y Acad Sci, 1997. 821: p. 194-207. • 74. Smith, G.W., et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron, 1998. 20(6): p. 1093-102. • 75. Arborelius, L., et al. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol, 1999. 160(1): p. 1-12. • 76. Raabe, F.J. and D. Spengler. Epigenetic Risk Factors in PTSD and Depression. Front Psychiatry, 2013. 4: p. 80. • 77. Sutanto, W., et al. Long-term effects of neonatal maternal deprivation and ACTH on hippocampal mineralocorticoid and glucocorticoid receptors. Brain Res Dev Brain Res, 1996. 92(2): p. 156-63. • 78. Ladd, C.O., et al. Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res, 2000. 122: p. 81-103. • 79. Ladd, C.O., et al. Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA 105

Biblioteca