Views
1 year ago

Utilidad coadyuvante potencial de los ácidos eicosapentanoico (EPA) y docosahexanoico (DHA), y de la citicolina en la enfermedad por coronavirus. M. Mazzoglio y Nabar, M.Muñiz, A. Algieri.

  • Text
  • Muñiz
  • Algieri
  • Mazzoglio
  • Coronavirus
  • Citicolina
  • Dha
  • Epa
  • Deterioro neurocognictivo
  • Citiloina
  • Acidos docosahexanoico
  • Acido eicosapentanoico
  • Covid
La enfermedad por el virus SARS-CoV-2 ha generado una pandemia desde su aparición a comienzo del año 2020 y actualmente la sociedad humana asiste a una etapa de “peripandemia” en que se pueden observar nuevos contagios, aquellos sujetos con recontagios y grupos de personas con secuelas de la enfermedad en sistemas sistemas corporales. El sistema nervioso central es uno de los lugares donde el virus ejerce un impacto negativo desde la primoinfección y los cuadros signosintomatológicos por el impacto viral son heterogéneos y aun no se cuenta con factores de riesgo o marcadores para predecir las secuelas. Dentro de las hipótesis, y sobre la base de investigaciones llevadas a cabo intrapandemia, la tormenta de citocinas que genera el COVID es uno de los mecanismos fisiopatológicos con mayor significación en la generación de dicho impacto negativo. Dado no existe una farmacoterapia para prevenir o disminuir las alteraciones neurocognitivas descriptas debidas al COVID, existen reportes que postulan la utilidad potencial de ciertas sustancias como coadyuvantes en el tratamiento sistémico de la enfermedad. En el presente artículo se describirá la potencial utilidad del ácido eicosapentanoico, del ácido docosahexanoico y de la citicolina, sustancias que no son nuevas y se utilizaban o habían sido estudiadas para otros cuadros, en el deterioro neurocognitivo debido al COVID.

Psicofarmacología

Psicofarmacología 23:132, marzo de 2023 • Calder, P. C., Carr, A. C., Gombart, A. F., and Eggersdorfer, M. (2020). Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 12:1181. • Carabelos R, Caamaño J, Gómez MJ, Fernández-Novoa L, Franco-Maside A, Alvarez XA (1996). Therapeutic effects of CDP-choline in Alzheimer’s disease. Cognition, brain mapping, cerebrovascular hemodynamics, and immune factors. Ann N Y Acad Sci, 777:399-403. • Conti, P., Ronconi, G., Caraffa, A., Gallenga, C. E., Ross, R., Frydas, I., et al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARSCoV-2): anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents. doi: 10.23812/CONTI-E. • Curtin, N., Banyai, K., Thaventhiran, J., Le- Quesne, J., Helyes, Z., and Bai, P. (2020). Repositioning PARP inhibitors for SARS-CoV-2 infection (COVID-19); a new multi-pronged therapy for ARDS? Br. J. Pharmacol. 177(16):3635- 3645. • Daroische R, Hemminghyth MS, Eilertsen TH, Breitve MH, Chwiszczuk LJ. Cognitive impairment after COVID-19 A review on objetive test data (2021). Front Neurol; 12:699582. • Dushianthan, A., Cusack, R., Burgess, V. A., Grocott, M. P., and Calder, P. C. (2019). Immunonutrition for acute respiratory distress syndrome (ARDS) in adults. Cochrane Database Syst. Rev. 1(1):CD012041. • EFSA (2012). EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion Related to the Tolerable Upper Intake Level of Eicosapentaenoic acid (EPA), Docosahexaenoic Acid (DHA) and Docosapentaenoic Acid (DPA). P. European Food Safety Authority (Efsa), Italy. EFSA Journa). • Fernández-Novoa L, Alvarez XA, Franco-Maside A, Caamaño J, Cacabelos R (1994). CDP-choline-induced blood histamine changes in Alzheimer’s disease. Methods Find Exp Clin Pharmacol, 16(4):279-284. • Franco-Maside A, Caamaño J, Gómez MJ, Cacabelos R (1994). Brain mapping activity and mental performance after chronic treatment with CDP-choline in Alzheimer’s disease. Methods Find Exp Clin Pharmacol, 16(8):597-607. • Frontera JA, Yang D, Lewis A, Patel P, Medicherla C et al. (2021) A prospective study of long-term outcomes among hospitalized CO- VID-19 patients with and without neurological complications. J Neurol Sci; 426:117486. • Gandhi S, Srivastava AK, Ray U, Tripathi PP (2020). Is the collapse of the respiratory center in the brain responsable for respiratory breakdown in COVID-19 patients? ACS Chem Neurosci;11(10):1379-1381. • Garcia-Grimshaw M, Chirino-Perez A, Flores-Silva FD, Valdes-Ferrer SI, Vargas-Martinez MLA et al. (2022) Critical role of acute hipoxemia on the neurocognitive impairment after severe COVID-19 pneumonia: a multivariate causality model análisis. Neurol Sci;43(4):2227-2229. • Grant, W. B., Lahore, H., Mcdonnell, S. L., Baggerly, C. A., French, C. B., Aliano, J. L., et al. (2020). Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 988. • Gruber SA, Sagar KA, Dahigren MK, Gonenc A, Conn NA, Winer JP, Penetar D, Lukas SE (2015). Citicoline treatmnt improves measures of impulsivity and task performance in chronic marijuana smorkers: a pilot BOLD fMRI study. Int J Neurol Neuroter; 2(3):1-8. • Gutierrez, S., Svahn, S. L., and Johansson, M. E. (2019). Effects of Omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 20, 5028. • Hosny M, Nahas R, Ali S, Abd Elshafei S, Khaled H (2013). Impact of oral omega-3 fatty acids supplementation in early sepsis on clinical outcome and immunomodulation, The Egyptian Journal of Critical Care Medicine 1 (3): 119-126 • Jayeant A, Vanderlind WM, Alexopoulos GS, Fridman CB, Perlis RH et al. (2021) Frequency and profile of objetive cognitive déficits in hospitalized patients recovering from COVID-19. Neuropsychopharmacoology;46(13):2235-2240. • Kiss, B., Szanto, M., Szklenar, M., Brunyanszki, A., Marosvolgyi, T., Sarosi, E., et al. (2015). Poly (ADP) ribose polymerase-1 ablation alters eicosanoid and docosanoid signaling and metabolism in a murine model of contact hypersensitivity. Mol. Med. Rep. 11, 2861–2867. • Liu, B., Li, M., Zhou, Z., Guan, X., and Xiang, Y. (2020). Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (CO- VID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun.111:102452. • Maskrey, B. H., Megson, I. L., Rossi, A. G., and Whitfield, P. D. (2013). Emerging importance of omega-3 fatty acids in the innate immune response: molecular mechanisms and lipidomic strategies for their analysis.Mol. Nutr. Food Res. 57, 1390–1400. • Mazza MG, Palladini M, De Lorenzo R, Magnaghi C, Poletti S et al. (2021) Persistent psychopathology and neurocognitive impairment in COVID-19 survivors. Effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun; 94:138-147. • Mehta, P., Mcauley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., et al. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034. • Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, et al. (2021) Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individual with COVID-19. Nat Neurosci;24(2):168-175. • Merad M, Martin JC (2020) Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol; 20(6):355-362. • Messina, G., Polito, R., Monda, V., Cipolloni, L., Di Nunno, N., Di Mizio, G., et al. (2020). Functional role of dietary intervention to improve the outcome of COVID-19: a hypothesis of work. Int. J. Mol. Sci. 21:3104. • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J. (2003). Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Archives of neurology. 60(7):940-6. • Muscogiuri, G., Barrea, L., Savastano, S., and Colao, A. (2020). Nutritional recommendations for CoVID-19 quarantine. Eur. J. Clin. Nutr. 74, 850–851. • Pontes-Arruda A, Aragao AM, Albuquerque JD (2006). Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med.; 34(9):2325-2333. • Pontes-Arruda A, DeMichele S, Seth A, Singer P (2008). The Use of an Inflammation-Modulating Diet in Patients With Acute Lung Injury or Acute Respiratory Distress Syndrome: A Meta-Analysis of Outcome Data. Journal of Parental and Enteral Nutrition;32(6):596-605. • Ramkumar J., Sharma N (2017). Low dose aspirin and omega-3 fatty acids in the pro-resolving pathway of cardiovascular disorders. Cardiol. Angiol.: Int. J.; 6:1–12. • Saedisomeolia, A., Wood, L. G., Garg, M. L., Gibson, P. G., and Wark, P. A. (2009). Anti-inflammatory effects of long-chain n-3 PUFA in rhinovirus-infected cultured airway epithelial cells. Br. J. Nutr. 101, 533–540. • Serhan C.N. (2014). Pro-resolving lipid mediators are leads for resolution physiology. Nature; 510:92–101. • Tan, A., Sullenbarger, B., Prakash, R., and Mcdaniel, J. C. (2018). Supplementation with eicosapentaenoic acid and docosahexaenoic acid reduces high level of circulating proinflammatory cytokines in aging adults: a randomized, controlled study. Prostaglandins Leukot. Essent. Fatty Acids 132, 23–29. • Tao, L. (2015). Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci. 1, 135–137. • Tisoncik, J. R., Korth, M. J., Simmons, C. P., Farrar, J., Martin, T. R., and Katze, M. G. (2012). Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76,16–32. • Torrinhas R.S., Calder P., Waitzberg D.L. (2020) Letter to the Editor in relation to Bistrian BR. Parenteral fish oil emulsions in critically ill COVID-19 emulsions. J Parenter. Enteral Nutr.10.1002. • Tracey KJ (2002) The inflammatory reflex. Nature;420(6917):853-9. • Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. (2020) Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients, 12, 2555. • Ur A, Verma K (2020) Cytokine storm in CO- VID19: a neural hypothesis. ACS Chem Neurosci;11(13):1868-1870. • van de Rest O, Geleijnse JM, Kok FJ, Van Staveren WA, Hoefnagels WH, Beekman AT, et al. (2008) Effect of fish-oil supplementation on mental well-being in older subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr.;88(3):706-13. • van de Rest O, Wang Y, Barnes LL, Tangney C, Bennett DA, Morris MC. (2016). APOE epsilon4 and the associations of seafood and long-chain omega-3 fatty acids with cognitive decline. Neurology. 86(22):2063-70. • Yanai, H., Masui, Y., Katsuyama, H., Adachi, H., Kawaguchi, A., Hakoshima, M., et al. (2018). An improvement of cardiovascular risk factors by Omega-3 polyunsaturated fatty acids. J. Clin. Med. Res. 10, 281–289. • Zhou, Q., Zhang, Z., Wang, P., Zhang, B., Chen, C., Zhang, C., et al. (2019). EPA+DHA, but not ALA, improved lipids and inflammation status in hypercholesterolemic adults: a randomized, double-blind, placebo-controlled trial. Mol. Nutr. Food Res. 63, e1801157. • Zivkovic, A. M., Telis, N., German, J. B., and Hammock, B. D. (2011). Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif. Agric. 65, 106–111. EDITORIAL SCIENS // 11

Biblioteca